MultiModalEncoder
- class falcon.tabular.processors.MultiModalEncoder(mask: List[ColumnTypes])
 Applies different types of encodings on numerical, categorical, text and date/datetime features.
- __init__(mask: List[ColumnTypes]) None
 - Parameters
 mask (List[ColumnTypes]) – provides a type for each column at a given index
- fit(X: ndarray[Any, dtype[ScalarType]], y: Optional[Any] = None, *args: Any, **kwargs: Any) None
 Fits the encoder.
- Parameters
 X (npt.NDArray) – data to encode
_ (Any, optional) – dummy argument to keep compatibility with pipeline training
- fit_pipe(X: Any, y: Any, *args: Any, **kwargs: Any) Any
 Equivalent of fit method that is used for elements chaining inisde pipeline during training.
- Parameters
 X (Any) – features
y (Any) – targets
- Returns
 usually None
- Return type
 Any
- forward(X: ndarray[Any, dtype[object_]], *args: Any, **kwargs: Any) ndarray[Any, dtype[ScalarType]]
 Equivalent of .predict() or .transform().
- Parameters
 X (npt.NDArray[object]) – data to process
- Returns
 processed data
- Return type
 npt.NDArray
- get_input_type() Type
 - Returns
 object
- Return type
 Type
- get_output_type() Type
 - Returns
 Float32Array
- Return type
 Type
- predict(X: ndarray[Any, dtype[ScalarType]], *args: Any, **kwargs: Any) ndarray[Any, dtype[ScalarType]]
 Applies the encoder.
- Parameters
 X (npt.NDArray) – input data
- Returns
 encoded data
- Return type
 npt.NDArray
- to_onnx() SerializedModelRepr
 Serializes the encoder to onnx. Each feature in the original dataset is mapped to its own input node (float32 for numerical or string for categorical).
- Return type
 SerializedModelRepr
- transform(X: ndarray[Any, dtype[ScalarType]], *args: Any, **kwargs: Any) ndarray[Any, dtype[ScalarType]]
 Equivalent of self.predict(X)
- Parameters
 X (npt.NDArray) – features
- Returns
 transformed features
- Return type
 npt.NDArray