PlainLearner
- class falcon.tabular.learners.PlainLearner(task: str, model_class: Optional[Type] = None, hyperparameters: Optional[Dict] = None, **kwargs: Any)
PlainLearner trains a model using provided or default hyperparameters.
- __init__(task: str, model_class: Optional[Type] = None, hyperparameters: Optional[Dict] = None, **kwargs: Any) None
- Parameters
task (str) – ‘tabular_classification’ or ‘tabular_regression’
model_class (Optional[Type], optional) – the class of the model to train, by default None; if None, HistGradientBoosting is used
hyperparameters (Dict, optional) – the dictionary of hyperparameters for model training
- fit(X: ndarray[Any, dtype[float32]], y: ndarray[Any, dtype[float32]], *args: Any, **kwargs: Any) None
Fits the model and trains the final model using them. For classification tasks, the dataset will be balanced by upsampling the minority class(es).
- Parameters
X (Float32Array) – features
y (Float32Array) – targets
- fit_pipe(X: ndarray[Any, dtype[float32]], y: ndarray[Any, dtype[float32]], *args: Any, **kwargs: Any) None
Equivalent to .fit(X, y)
- Parameters
X (Float32Array) – features
y (Float32Array) – targets
- forward(X: Any, *args: Any, **kwargs: Any) Any
Equivalent of predict method that is used for elements chaining inside pipeline during inference.
- Parameters
X (Any) – featrues
- Returns
predictions
- Return type
Any
- get_input_type() Type
- Returns
Float32Array
- Return type
Type
- get_output_type() Type
- Returns
Float32Array for regression, Int64Array for classification
- Return type
Type
- predict(X: ndarray[Any, dtype[float32]], *args: Any, **kwargs: Any) Union[ndarray[Any, dtype[float32]], ndarray[Any, dtype[int64]]]
- Parameters
X (npt.NDArray) – features
- Returns
predictions
- Return type
npt.NDArray
- to_onnx() SerializedModelRepr
Serializes the underlying model to onnx by calling its .to_onnx() method.
- Return type
SerializedModelRepr