HistGradientBoostingRegressor
- class falcon.tabular.models.HistGradientBoostingRegressor(max_iter: int = 100, min_samples_leaf: int = 20, learning_rate: float = 0.1, l2_regularization: float = 0.0, random_seed: int = 42, **kwargs: Any)
Wrapper around sklearn.ensemble.HistGradientBoostingRegressor.
- __init__(max_iter: int = 100, min_samples_leaf: int = 20, learning_rate: float = 0.1, l2_regularization: float = 0.0, random_seed: int = 42, **kwargs: Any)
- Parameters
max_iter (int, optional) – number of decision trees, by default 100
min_samples_leaf (int, optional) – minimum number of samples per leaf, by default 20
learning_rate (float, optional) – learning rate, by default 0.1
l2_regularization (float, optional) – L2 regularization parameter, by default 0.0
random_seed (int, optional) – by default 42
- fit(X: ndarray[Any, dtype[float32]], y: ndarray[Any, dtype[float32]], *args: Any, **kwargs: Any) None
Fits the model
- Parameters
X (Float32Array) – Features
y (Float32Array) – targets
- classmethod get_search_space(X: ndarray[Any, dtype[ScalarType]], y: ndarray[Any, dtype[ScalarType]]) Union[Callable, Dict]
A class method that provides an optuna search space for the model. Optionally, the search space can be adjusted based on the provided training data.
- Parameters
X (Any) – features
y (Any) – targets
- Returns
dictionary that describes the search space, or custom objective function
- Return type
Union[Callable, Dict]
- predict(X: ndarray[Any, dtype[ScalarType]], *args: Any, **kwargs: Any) ndarray[Any, dtype[ScalarType]]
- Parameters
X (npt.NDArray) – features
- Returns
predictions
- Return type
npt.NDArray
- to_onnx() SerializedModelRepr
Serializes the model to onnx.
- Return type
SerializedModelRepr