SuperLearner
- class falcon.tabular.learners.SuperLearner(task: str, base_estimators: Optional[List[Tuple[str, Callable, Dict]]] = None, base_score_threshold: Optional[float] = None, cv: Optional[Any] = None, filter_estimators: Optional[bool] = None)
Tabular learner which employs StackingModel for construction of meta estimator.
- __init__(task: str, base_estimators: Optional[List[Tuple[str, Callable, Dict]]] = None, base_score_threshold: Optional[float] = None, cv: Optional[Any] = None, filter_estimators: Optional[bool] = None) None
Constructs a meta model which is trained on cross-validated predictions of base estimators.
- Parameters
task (str) – tabular_classification or tabular_regression
base_estimators (Optional[List[Tuple[str, Callable, Dict]]], optional) – list of base estimators, by default None
base_score_threshold (Optional[float], optional) – threshold for filtering of the estimators, by default None
cv (Any, optional) – number of CV folds or CV custom object, by default None
filter_estimators (Optional[bool], optional) – when True, the perfomance of the estimators pre-estimated on the subset of training, estimators with the performance below the threshold will not be used for meta model construction, by default None
- fit(X: ndarray[Any, dtype[float32]], y: ndarray[Any, dtype[float32]], *args: Any, **kwargs: Any) None
Fits the model. The hyperparameters that were not passed to the __init__ will be automatically determined based on the size of the training set. For classification tasks, the dataset will be balanced by upsampling the minority class(es).
- Parameters
X (Float32Array) – features
y (Float32Array) – targets
- fit_pipe(X: ndarray[Any, dtype[float32]], y: ndarray[Any, dtype[float32]], *args: Any, **kwargs: Any) None
Equivalent to .fit(X, y)
- Parameters
X (Float32Array) – features
y (Float32Array) – targets
- forward(X: ndarray[Any, dtype[float32]], *args: Any, **kwargs: Any) Union[ndarray[Any, dtype[float32]], ndarray[Any, dtype[int64]]]
Equivalen to .predict(X)
- Parameters
X (Float32Array) – features
- Returns
predictions
- Return type
Union[Float32Array, Int64Array]
- get_input_type() Type
- Returns
Float32Array
- Return type
Type
- get_output_type() Type
- Returns
Float32Array for regression, Int64Array for classification
- Return type
Type
- predict(X: ndarray[Any, dtype[float32]], *args: Any, **kwargs: Any) Union[ndarray[Any, dtype[float32]], ndarray[Any, dtype[int64]]]
Makes a prediction for given X.
- Parameters
X (Float32Array) – features
- Returns
predictions
- Return type
Union[Float32Array, Int64Array]
- to_onnx() SerializedModelRepr
Serializes the underlying model to onnx by calling its .to_onnx() method.
- Return type
SerializedModelRepr