Tabular

TabularTaskManager(task, data[, pipeline, ...])

Default task manager for tabular data.

pipelines.SimpleTabularPipeline(task, mask, ...)

Default tabular pipeline.

processors.ScalerAndEncoder(mask)

Applies OneHotEncoder/OrdinalEncoder on low/high cardinality categorical features and StandardScaler on numerical features.

processors.MultiModalEncoder(mask)

Applies different types of encodings on numerical, categorical, text and date/datetime features.

processors.LabelDecoder()

Label encoder/decoder to be used for encoding labels as integers and vice versa.

learners.SuperLearner(task[, ...])

Tabular learner which employs StackingModel for construction of meta estimator.

learners.OptunaLearner(task[, model_class, ...])

OptunaLerner select the best hyperparameters for the given model using the Optuna Framework.

learners.PlainLearner(task[, model_class, ...])

PlainLearner trains a model using provided or default hyperparameters.

models.HistGradientBoostingClassifier([...])

Wrapper around sklearn.ensemble.HistGradientBoostingClassifier.

models.HistGradientBoostingRegressor([...])

Wrapper around sklearn.ensemble.HistGradientBoostingRegressor.

models.StackingClassifier(estimators, ...[, ...])

Small wrapper around sklearn.ensemble.StackingClassifier.

models.StackingRegressor(estimators, ...[, ...])

Small wrapper around sklearn.ensemble.StackingRegressor.