Scikit-learn API
- class falcon.sklapi.FalconTabularClassifier(config: Union[str, Dict] = 'SuperLearner', make_eval_set: bool = False)
Falcon sklearn wrapper to be used for tabular classification tasks. Alternatively, FalconClassifier can be used as an alias.
- __init__(config: Union[str, Dict] = 'SuperLearner', make_eval_set: bool = False) None
- Parameters
config (Union[str, Dict], optional) – configuration to be used, by default “SuperLearner”
make_eval_set (bool, optional) – determines if an evaluation set should be created, by default False
- fit(X: Union[DataFrame, ndarray[Any, dtype[ScalarType]]], y: Union[DataFrame, ndarray[Any, dtype[ScalarType]]]) _FalconBaseEstimator
Fits the classifier
- Parameters
X (Union[pd.DataFrame, npt.NDArray]) – data
y (Union[pd.DataFrame, npt.NDArray]) – labels
- get_params(deep=True)
Get parameters for this estimator.
- Parameters
deep (bool, default=True) – If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
params – Parameter names mapped to their values.
- Return type
dict
- save_model(filename: Optional[str]) None
Saves model in onnx format
- Parameters
filename (str, optional) – filename of the saved model
- score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.
In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.
- Parameters
X (array-like of shape (n_samples, n_features)) – Test samples.
y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True labels for X.
sample_weight (array-like of shape (n_samples,), default=None) – Sample weights.
- Returns
score – Mean accuracy of
self.predict(X)
wrt. y.- Return type
float
- set_params(**params)
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
**params (dict) – Estimator parameters.
- Returns
self – Estimator instance.
- Return type
estimator instance
- class falcon.sklapi.FalconTabularRegressor(config: Union[str, Dict] = 'SuperLearner', make_eval_set: bool = False)
Falcon sklearn wrapper to be used for tabular regression tasks. Alternatively, FalconRegressor can be used as an alias.
- __init__(config: Union[str, Dict] = 'SuperLearner', make_eval_set: bool = False) None
- Parameters
config (Union[str, Dict], optional) – configuration to be used, by default “SuperLearner”
make_eval_set (bool, optional) – determines if an evaluation set should be created, by default False
- fit(X: Union[DataFrame, ndarray[Any, dtype[ScalarType]]], y: Union[DataFrame, ndarray[Any, dtype[ScalarType]]]) _FalconBaseEstimator
Fits the regressor
- Parameters
X (Union[pd.DataFrame, npt.NDArray]) – data
y (Union[pd.DataFrame, npt.NDArray]) – labels
- get_params(deep=True)
Get parameters for this estimator.
- Parameters
deep (bool, default=True) – If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
params – Parameter names mapped to their values.
- Return type
dict
- save_model(filename: Optional[str]) None
Saves model in onnx format
- Parameters
filename (str, optional) – filename of the saved model
- score(X, y, sample_weight=None)
Return the coefficient of determination of the prediction.
The coefficient of determination \(R^2\) is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares
((y_true - y_pred)** 2).sum()
and \(v\) is the total sum of squares((y_true - y_true.mean()) ** 2).sum()
. The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a \(R^2\) score of 0.0.- Parameters
X (array-like of shape (n_samples, n_features)) – Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape
(n_samples, n_samples_fitted)
, wheren_samples_fitted
is the number of samples used in the fitting for the estimator.y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True values for X.
sample_weight (array-like of shape (n_samples,), default=None) – Sample weights.
- Returns
score – \(R^2\) of
self.predict(X)
wrt. y.- Return type
float
Notes
The \(R^2\) score used when calling
score
on a regressor usesmultioutput='uniform_average'
from version 0.23 to keep consistent with default value ofr2_score()
. This influences thescore
method of all the multioutput regressors (except forMultiOutputRegressor
).
- set_params(**params)
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
**params (dict) – Estimator parameters.
- Returns
self – Estimator instance.
- Return type
estimator instance