StackingClassifier
- class falcon.tabular.models.StackingClassifier(estimators: List[Tuple[str, BaseEstimator]], final_estimator: BaseEstimator, balanced: bool = True, cv: Any = 5, n_jobs: int = 1, passthrough: bool = False, verbose: int = 0, stack_method: Any = 'auto', **kwargs: Any)
Small wrapper around sklearn.ensemble.StackingClassifier.
- __init__(estimators: List[Tuple[str, BaseEstimator]], final_estimator: BaseEstimator, balanced: bool = True, cv: Any = 5, n_jobs: int = 1, passthrough: bool = False, verbose: int = 0, stack_method: Any = 'auto', **kwargs: Any) None
Small wrapper around sklearn.ensemble.StackingClassifier. For more detailed description please refer to sklarn documentation.
- Parameters
estimators (List[Tuple[str, BaseEstimator]]) – base estimators
final_estimator (BaseEstimator) – meta estimator, by default LogisticRegression
balanced (bool, optional) – if True, the classes are balanced by performing random oversampling, by default True
cv (Any, optional) – number of CV folds, or custom CV object, by default 5
n_jobs (int, optional) – number of parallel jobs, by default -1
passthrough (bool, optional) – when True the meta estimator is trained on original data in addition to the predictions of base estimators, by default False
verbose (int, optional) – verbosity level of underlying sklearn estimator, by default 0
stack_method (Any, optional) – methods called for each base estimator, by default “auto”
- fit(X: ndarray[Any, dtype[float32]], y: ndarray[Any, dtype[float32]], *args: Any, **kwargs: Any) None
Fits the model
- Parameters
X (Float32Array) – Features
y (Float32Array) – targets
- predict(X: ndarray[Any, dtype[float32]], *args: Any, **kwargs: Any) ndarray[Any, dtype[float32]]
Predicts the target for the given input
- Parameters
X (Float32Array) – featrues
- Returns
predictions
- Return type
Float32Array
- to_onnx() SerializedModelRepr
Serializes the model to onnx.
- Return type
SerializedModelRepr