TaskManager
- class falcon.abstract.TaskManager(task: str, data: Any, pipeline: Optional[Type[Pipeline]] = None, pipeline_options: Optional[Dict] = None, extra_pipeline_options: Optional[Dict] = None, features: Optional[Any] = None, target: Optional[Any] = None)
Base class for all Task Managers.
- __init__(task: str, data: Any, pipeline: Optional[Type[Pipeline]] = None, pipeline_options: Optional[Dict] = None, extra_pipeline_options: Optional[Dict] = None, features: Optional[Any] = None, target: Optional[Any] = None)
- Parameters
task (str) – current task
data (Any) – data to be used for training
pipeline (Optional[Type[Pipeline]], optional) – pipeline class to be used, by default None
pipeline_options (Optional[Dict], optional) – arguments to be passed to pipeline instead of default ones, by default None
extra_pipeline_options (Optional[Dict], optional) – arguments to be passed to pipeline in addition to default ones, by default None
features (Any, optional) – featrues to be used for training, by default None
target (Any, optional) – targets to be used for training, by default None
- _create_pipeline(pipeline: Optional[Type[Pipeline]], options: Optional[Dict]) None
Initializes the pipeline.
- Parameters
pipeline (Optional[Type[Pipeline]]) – pipeline class
options (Optional[Dict]) – pipeline options
- abstract _prepare_data(data: Any) Any
Initial data preparation (e.g. reading from file). Warning: initial data preparation (e.g. reading, cleaning) and data preprocessing (e.g. scaling, encoding) are two distinct steps. The later one is performed inside the pipeline.
- Parameters
data (Any) – training data
- Returns
prepared data
- Return type
Any
- abstract property default_pipeline: Type[Pipeline]
Default pipeline class. Can be chosen dynamically.
- abstract property default_pipeline_options: Dict
Default pipeline options. Can be chosen dynamically.
- abstract evaluate(test_data: Any) Any
Evaluates the performance of a trained pipeline.
- Parameters
test_data (Any) – data to be used for evaluation
- Returns
evaluation metric or None
- Return type
Any
- abstract performance_summary(test_data: Any) Any
Prints the performance summary of the trained pipeline.
- Parameters
test_data (Any) – test set, optional
- Returns
relevant metrics or None
- Return type
Any
- predict(X: Any) Any
Calls predict methods of the pipeline.
- Parameters
X (Any) – features
- Returns
predictions
- Return type
Any
- save_model(filename: Optional[str] = None, **kwargs: Any) ModelProto
Serializes and saves the model.
- Parameters
filename (Optional[str], optional) – filename for the model file, by default None. If filename is not specified, the model is not saved on disk and only returned as bytes object
- Returns
ONNX ModelProto of the model
- Return type
ModelProto
- abstract train(**kwargs: Any) TaskManager
Trains the underlying pipeline.
- Returns
self
- Return type